
4
RELATIONAL ALGEBRA

AND CALCULUS

Stand firm in your refusal to remain conscious during algebra. In real life, I assure

you, there is no such thing as algebra.

—Fran Lebowitz, Social Studies

This chapter presents two formal query languages associated with the relational model.

Query languages are specialized languages for asking questions, or queries, that in-

volve the data in a database. After covering some preliminaries in Section 4.1, we

discuss relational algebra in Section 4.2. Queries in relational algebra are composed

using a collection of operators, and each query describes a step-by-step procedure for

computing the desired answer; that is, queries are specified in an operational manner.

In Section 4.3 we discuss relational calculus, in which a query describes the desired

answer without specifying how the answer is to be computed; this nonprocedural style

of querying is called declarative. We will usually refer to relational algebra and rela-

tional calculus as algebra and calculus, respectively. We compare the expressive power

of algebra and calculus in Section 4.4. These formal query languages have greatly

influenced commercial query languages such as SQL, which we will discuss in later

chapters.

4.1 PRELIMINARIES

We begin by clarifying some important points about relational queries. The inputs and

outputs of a query are relations. A query is evaluated using instances of each input

relation and it produces an instance of the output relation. In Section 3.4, we used

field names to refer to fields because this notation makes queries more readable. An

alternative is to always list the fields of a given relation in the same order and to refer

to fields by position rather than by field name.

In defining relational algebra and calculus, the alternative of referring to fields by

position is more convenient than referring to fields by name: Queries often involve the

computation of intermediate results, which are themselves relation instances, and if

we use field names to refer to fields, the definition of query language constructs must

specify the names of fields for all intermediate relation instances. This can be tedious

and is really a secondary issue because we can refer to fields by position anyway. On

the other hand, field names make queries more readable.

91

92 Chapter 4

Due to these considerations, we use the positional notation to formally define relational

algebra and calculus. We also introduce simple conventions that allow intermediate

relations to ‘inherit’ field names, for convenience.

We present a number of sample queries using the following schema:

Sailors(sid: integer, sname: string, rating: integer, age: real)

Boats(bid: integer, bname: string, color: string)

Reserves(sid: integer, bid: integer, day: date)

The key fields are underlined, and the domain of each field is listed after the field

name. Thus sid is the key for Sailors, bid is the key for Boats, and all three fields

together form the key for Reserves. Fields in an instance of one of these relations will

be referred to by name, or positionally, using the order in which they are listed above.

In several examples illustrating the relational algebra operators, we will use the in-

stances S1 and S2 (of Sailors) and R1 (of Reserves) shown in Figures 4.1, 4.2, and 4.3,

respectively.

sid sname rating age

22 Dustin 7 45.0

31 Lubber 8 55.5

58 Rusty 10 35.0

Figure 4.1 Instance S1 of Sailors

sid sname rating age

28 yuppy 9 35.0

31 Lubber 8 55.5

44 guppy 5 35.0

58 Rusty 10 35.0

Figure 4.2 Instance S2 of Sailors

sid bid day

22 101 10/10/96

58 103 11/12/96

Figure 4.3 Instance R1 of Reserves

4.2 RELATIONAL ALGEBRA

Relational algebra is one of the two formal query languages associated with the re-

lational model. Queries in algebra are composed using a collection of operators. A

fundamental property is that every operator in the algebra accepts (one or two) rela-

tion instances as arguments and returns a relation instance as the result. This property

makes it easy to compose operators to form a complex query—a relational algebra

expression is recursively defined to be a relation, a unary algebra operator applied

Relational Algebra and Calculus 93

to a single expression, or a binary algebra operator applied to two expressions. We

describe the basic operators of the algebra (selection, projection, union, cross-product,

and difference), as well as some additional operators that can be defined in terms of

the basic operators but arise frequently enough to warrant special attention, in the

following sections.

Each relational query describes a step-by-step procedure for computing the desired

answer, based on the order in which operators are applied in the query. The procedural

nature of the algebra allows us to think of an algebra expression as a recipe, or a

plan, for evaluating a query, and relational systems in fact use algebra expressions to

represent query evaluation plans.

4.2.1 Selection and Projection

Relational algebra includes operators to select rows from a relation (σ) and to project

columns (π). These operations allow us to manipulate data in a single relation. Con-

sider the instance of the Sailors relation shown in Figure 4.2, denoted as S2. We can

retrieve rows corresponding to expert sailors by using the σ operator. The expression

σrating>8(S2)

evaluates to the relation shown in Figure 4.4. The subscript rating>8 specifies the

selection criterion to be applied while retrieving tuples.

sid sname rating age

28 yuppy 9 35.0

58 Rusty 10 35.0

Figure 4.4 σrating>8(S2)

sname rating

yuppy 9

Lubber 8

guppy 5

Rusty 10

Figure 4.5 πsname,rating(S2)

The selection operator σ specifies the tuples to retain through a selection condition.

In general, the selection condition is a boolean combination (i.e., an expression using

the logical connectives ∧ and ∨) of terms that have the form attribute op constant or

attribute1 op attribute2, where op is one of the comparison operators <, <=, =, 6=, >=,

or >. The reference to an attribute can be by position (of the form .i or i) or by name

(of the form .name or name). The schema of the result of a selection is the schema of

the input relation instance.

The projection operator π allows us to extract columns from a relation; for example,

we can find out all sailor names and ratings by using π. The expression

πsname,rating(S2)

94 Chapter 4

evaluates to the relation shown in Figure 4.5. The subscript sname,rating specifies the

fields to be retained; the other fields are ‘projected out.’ The schema of the result of

a projection is determined by the fields that are projected in the obvious way.

Suppose that we wanted to find out only the ages of sailors. The expression

πage(S2)

evaluates to the relation shown in Figure 4.6. The important point to note is that

although three sailors are aged 35, a single tuple with age=35.0 appears in the result

of the projection. This follows from the definition of a relation as a set of tuples. In

practice, real systems often omit the expensive step of eliminating duplicate tuples,

leading to relations that are multisets. However, our discussion of relational algebra

and calculus assumes that duplicate elimination is always done so that relations are

always sets of tuples.

Since the result of a relational algebra expression is always a relation, we can substitute

an expression wherever a relation is expected. For example, we can compute the names

and ratings of highly rated sailors by combining two of the preceding queries. The

expression

πsname,rating(σrating>8(S2))

produces the result shown in Figure 4.7. It is obtained by applying the selection to S2

(to get the relation shown in Figure 4.4) and then applying the projection.

age

35.0

55.5

Figure 4.6 πage(S2)

sname rating

yuppy 9

Rusty 10

Figure 4.7 πsname,rating(σrating>8(S2))

4.2.2 Set Operations

The following standard operations on sets are also available in relational algebra: union

(∪), intersection (∩), set-difference (−), and cross-product (×).

Union: R∪S returns a relation instance containing all tuples that occur in either

relation instance R or relation instance S (or both). R and S must be union-

compatible, and the schema of the result is defined to be identical to the schema

of R.

Two relation instances are said to be union-compatible if the following condi-

tions hold:

– they have the same number of the fields, and

– corresponding fields, taken in order from left to right, have the same domains.

Relational Algebra and Calculus 95

Note that field names are not used in defining union-compatibility. For conve-

nience, we will assume that the fields of R ∪ S inherit names from R, if the fields

of R have names. (This assumption is implicit in defining the schema of R ∪ S to

be identical to the schema of R, as stated earlier.)

Intersection: R∩S returns a relation instance containing all tuples that occur in

both R and S. The relations R and S must be union-compatible, and the schema

of the result is defined to be identical to the schema of R.

Set-difference: R−S returns a relation instance containing all tuples that occur

in R but not in S. The relations R and S must be union-compatible, and the

schema of the result is defined to be identical to the schema of R.

Cross-product: R×S returns a relation instance whose schema contains all the

fields of R (in the same order as they appear in R) followed by all the fields of S

(in the same order as they appear in S). The result of R × S contains one tuple

〈r, s〉 (the concatenation of tuples r and s) for each pair of tuples r ∈ R, s ∈ S.

The cross-product opertion is sometimes called Cartesian product.

We will use the convention that the fields of R × S inherit names from the cor-

responding fields of R and S. It is possible for both R and S to contain one or

more fields having the same name; this situation creates a naming conflict. The

corresponding fields in R × S are unnamed and are referred to solely by position.

In the preceding definitions, note that each operator can be applied to relation instances

that are computed using a relational algebra (sub)expression.

We now illustrate these definitions through several examples. The union of S1 and S2

is shown in Figure 4.8. Fields are listed in order; field names are also inherited from

S1. S2 has the same field names, of course, since it is also an instance of Sailors. In

general, fields of S2 may have different names; recall that we require only domains to

match. Note that the result is a set of tuples. Tuples that appear in both S1 and S2

appear only once in S1 ∪ S2. Also, S1 ∪ R1 is not a valid operation because the two

relations are not union-compatible. The intersection of S1 and S2 is shown in Figure

4.9, and the set-difference S1 − S2 is shown in Figure 4.10.

sid sname rating age

22 Dustin 7 45.0

31 Lubber 8 55.5

58 Rusty 10 35.0

28 yuppy 9 35.0

44 guppy 5 35.0

Figure 4.8 S1 ∪ S2

96 Chapter 4

sid sname rating age

31 Lubber 8 55.5

58 Rusty 10 35.0

Figure 4.9 S1 ∩ S2

sid sname rating age

22 Dustin 7 45.0

Figure 4.10 S1 − S2

The result of the cross-product S1 × R1 is shown in Figure 4.11. Because R1 and

S1 both have a field named sid, by our convention on field names, the corresponding

two fields in S1 × R1 are unnamed, and referred to solely by the position in which

they appear in Figure 4.11. The fields in S1 × R1 have the same domains as the

corresponding fields in R1 and S1. In Figure 4.11 sid is listed in parentheses to

emphasize that it is not an inherited field name; only the corresponding domain is

inherited.

(sid) sname rating age (sid) bid day

22 Dustin 7 45.0 22 101 10/10/96

22 Dustin 7 45.0 58 103 11/12/96

31 Lubber 8 55.5 22 101 10/10/96

31 Lubber 8 55.5 58 103 11/12/96

58 Rusty 10 35.0 22 101 10/10/96

58 Rusty 10 35.0 58 103 11/12/96

Figure 4.11 S1 × R1

4.2.3 Renaming

We have been careful to adopt field name conventions that ensure that the result of

a relational algebra expression inherits field names from its argument (input) relation

instances in a natural way whenever possible. However, name conflicts can arise in

some cases; for example, in S1 × R1. It is therefore convenient to be able to give

names explicitly to the fields of a relation instance that is defined by a relational

algebra expression. In fact, it is often convenient to give the instance itself a name so

that we can break a large algebra expression into smaller pieces by giving names to

the results of subexpressions.

We introduce a renaming operator ρ for this purpose. The expression ρ(R(F), E)

takes an arbitrary relational algebra expression E and returns an instance of a (new)

relation called R. R contains the same tuples as the result of E, and has the same

schema as E, but some fields are renamed. The field names in relation R are the

same as in E, except for fields renamed in the renaming list F , which is a list of

Relational Algebra and Calculus 97

terms having the form oldname → newname or position → newname. For ρ to be

well-defined, references to fields (in the form of oldnames or positions in the renaming

list) may be unambiguous, and no two fields in the result must have the same name.

Sometimes we only want to rename fields or to (re)name the relation; we will therefore

treat both R and F as optional in the use of ρ. (Of course, it is meaningless to omit

both.)

For example, the expression ρ(C(1 → sid1, 5 → sid2), S1 × R1) returns a relation

that contains the tuples shown in Figure 4.11 and has the following schema: C(sid1:

integer, sname: string, rating: integer, age: real, sid2: integer, bid: integer,

day: dates).

It is customary to include some additional operators in the algebra, but they can all be

defined in terms of the operators that we have defined thus far. (In fact, the renaming

operator is only needed for syntactic convenience, and even the ∩ operator is redundant;

R ∩ S can be defined as R − (R − S).) We will consider these additional operators,

and their definition in terms of the basic operators, in the next two subsections.

4.2.4 Joins

The join operation is one of the most useful operations in relational algebra and is

the most commonly used way to combine information from two or more relations.

Although a join can be defined as a cross-product followed by selections and projections,

joins arise much more frequently in practice than plain cross-products. Further, the

result of a cross-product is typically much larger than the result of a join, and it

is very important to recognize joins and implement them without materializing the

underlying cross-product (by applying the selections and projections ‘on-the-fly’). For

these reasons, joins have received a lot of attention, and there are several variants of

the join operation.1

Condition Joins

The most general version of the join operation accepts a join condition c and a pair of

relation instances as arguments, and returns a relation instance. The join condition is

identical to a selection condition in form. The operation is defined as follows:

R ⊲⊳c S = σc(R × S)

Thus ⊲⊳ is defined to be a cross-product followed by a selection. Note that the condition

c can (and typically does) refer to attributes of both R and S. The reference to an

1There are several variants of joins that are not discussed in this chapter. An important class of
joins called outer joins is discussed in Chapter 5.

98 Chapter 4

attribute of a relation, say R, can be by position (of the form R.i) or by name (of the

form R.name).

As an example, the result of S1 ⊲⊳S1.sid<R1.sid R1 is shown in Figure 4.12. Because sid

appears in both S1 and R1, the corresponding fields in the result of the cross-product

S1 × R1 (and therefore in the result of S1 ⊲⊳S1.sid<R1.sid R1) are unnamed. Domains

are inherited from the corresponding fields of S1 and R1.

(sid) sname rating age (sid) bid day

22 Dustin 7 45.0 58 103 11/12/96

31 Lubber 8 55.5 58 103 11/12/96

Figure 4.12 S1 ⊲⊳S1.sid<R1.sid R1

Equijoin

A common special case of the join operation R ⊲⊳ S is when the join condition con-

sists solely of equalities (connected by ∧) of the form R.name1 = S.name2, that is,

equalities between two fields in R and S. In this case, obviously, there is some redun-

dancy in retaining both attributes in the result. For join conditions that contain only

such equalities, the join operation is refined by doing an additional projection in which

S.name2 is dropped. The join operation with this refinement is called equijoin.

The schema of the result of an equijoin contains the fields of R (with the same names

and domains as in R) followed by the fields of S that do not appear in the join

conditions. If this set of fields in the result relation includes two fields that inherit the

same name from R and S, they are unnamed in the result relation.

We illustrate S1 ⊲⊳R.sid=S.sid R1 in Figure 4.13. Notice that only one field called sid

appears in the result.

sid sname rating age bid day

22 Dustin 7 45.0 101 10/10/96

58 Rusty 10 35.0 103 11/12/96

Figure 4.13 S1 ⊲⊳R.sid=S.sid R1

Relational Algebra and Calculus 99

Natural Join

A further special case of the join operation R ⊲⊳ S is an equijoin in which equalities

are specified on all fields having the same name in R and S. In this case, we can

simply omit the join condition; the default is that the join condition is a collection of

equalities on all common fields. We call this special case a natural join, and it has the

nice property that the result is guaranteed not to have two fields with the same name.

The equijoin expression S1 ⊲⊳R.sid=S.sid R1 is actually a natural join and can simply

be denoted as S1 ⊲⊳ R1, since the only common field is sid. If the two relations have

no attributes in common, S1 ⊲⊳ R1 is simply the cross-product.

4.2.5 Division

The division operator is useful for expressing certain kinds of queries, for example:

“Find the names of sailors who have reserved all boats.” Understanding how to use

the basic operators of the algebra to define division is a useful exercise. However,

the division operator does not have the same importance as the other operators—it

is not needed as often, and database systems do not try to exploit the semantics of

division by implementing it as a distinct operator (as, for example, is done with the

join operator).

We discuss division through an example. Consider two relation instances A and B in

which A has (exactly) two fields x and y and B has just one field y, with the same

domain as in A. We define the division operation A/B as the set of all x values (in

the form of unary tuples) such that for every y value in (a tuple of) B, there is a tuple

〈x,y〉 in A.

Another way to understand division is as follows. For each x value in (the first column

of) A, consider the set of y values that appear in (the second field of) tuples of A with

that x value. If this set contains (all y values in) B, the x value is in the result of A/B.

An analogy with integer division may also help to understand division. For integers A

and B, A/B is the largest integer Q such that Q ∗ B ≤ A. For relation instances A

and B, A/B is the largest relation instance Q such that Q × B ⊆ A.

Division is illustrated in Figure 4.14. It helps to think of A as a relation listing the

parts supplied by suppliers, and of the B relations as listing parts. A/Bi computes

suppliers who supply all parts listed in relation instance Bi.

Expressing A/B in terms of the basic algebra operators is an interesting exercise, and

the reader should try to do this before reading further. The basic idea is to compute

all x values in A that are not disqualified. An x value is disqualified if by attaching a

100 Chapter 4

sno pno

pno

pno

sno

sno

sno

s1 p1

p2

s1

p4

p1

p2

p2

p2

p4
p2

s2

s3

s1

s1

p3

s1

pno

s2

s2

s3

s4

s4

p2

p2

p4

p1

p4

s1

s4

s4

s1

A B1

B2

B3

A/B3

A/B2

A/B1

Figure 4.14 Examples Illustrating Division

y value from B, we obtain a tuple 〈x,y〉 that is not in A. We can compute disqualified

tuples using the algebra expression

πx((πx(A) × B) − A)

Thus we can define A/B as

πx(A) − πx((πx(A) × B) − A)

To understand the division operation in full generality, we have to consider the case

when both x and y are replaced by a set of attributes. The generalization is straightfor-

ward and is left as an exercise for the reader. We will discuss two additional examples

illustrating division (Queries Q9 and Q10) later in this section.

4.2.6 More Examples of Relational Algebra Queries

We now present several examples to illustrate how to write queries in relational algebra.

We use the Sailors, Reserves, and Boats schema for all our examples in this section.

We will use parentheses as needed to make our algebra expressions unambiguous. Note

that all the example queries in this chapter are given a unique query number. The

query numbers are kept unique across both this chapter and the SQL query chapter

(Chapter 5). This numbering makes it easy to identify a query when it is revisited in

the context of relational calculus and SQL and to compare different ways of writing

the same query. (All references to a query can be found in the subject index.)

Relational Algebra and Calculus 101

In the rest of this chapter (and in Chapter 5), we illustrate queries using the instances

S3 of Sailors, R2 of Reserves, and B1 of Boats, shown in Figures 4.15, 4.16, and 4.17,

respectively.

sid sname rating age

22 Dustin 7 45.0

29 Brutus 1 33.0

31 Lubber 8 55.5

32 Andy 8 25.5

58 Rusty 10 35.0

64 Horatio 7 35.0

71 Zorba 10 16.0

74 Horatio 9 35.0

85 Art 3 25.5

95 Bob 3 63.5

Figure 4.15 An Instance S3 of Sailors

sid bid day

22 101 10/10/98

22 102 10/10/98

22 103 10/8/98

22 104 10/7/98

31 102 11/10/98

31 103 11/6/98

31 104 11/12/98

64 101 9/5/98

64 102 9/8/98

74 103 9/8/98

Figure 4.16 An Instance R2 of Reserves

bid bname color

101 Interlake blue

102 Interlake red

103 Clipper green

104 Marine red

Figure 4.17 An Instance B1 of Boats

(Q1) Find the names of sailors who have reserved boat 103.

This query can be written as follows:

πsname((σbid=103Reserves) ⊲⊳ Sailors)

We first compute the set of tuples in Reserves with bid = 103 and then take the

natural join of this set with Sailors. This expression can be evaluated on instances

of Reserves and Sailors. Evaluated on the instances R2 and S3, it yields a relation

that contains just one field, called sname, and three tuples 〈Dustin〉, 〈Horatio〉, and

〈Lubber〉. (Observe that there are two sailors called Horatio, and only one of them has

reserved a red boat.)

We can break this query into smaller pieces using the renaming operator ρ:

ρ(Temp1, σbid=103Reserves)

102 Chapter 4

ρ(Temp2, T emp1 ⊲⊳ Sailors)

πsname(Temp2)

Notice that because we are only using ρ to give names to intermediate relations, the

renaming list is optional and is omitted. Temp1 denotes an intermediate relation that

identifies reservations of boat 103. Temp2 is another intermediate relation, and it

denotes sailors who have made a reservation in the set Temp1. The instances of these

relations when evaluating this query on the instances R2 and S3 are illustrated in

Figures 4.18 and 4.19. Finally, we extract the sname column from Temp2.

sid bid day

22 103 10/8/98

31 103 11/6/98

74 103 9/8/98

Figure 4.18 Instance of Temp1

sid sname rating age bid day

22 Dustin 7 45.0 103 10/8/98

31 Lubber 8 55.5 103 11/6/98

74 Horatio 9 35.0 103 9/8/98

Figure 4.19 Instance of Temp2

The version of the query using ρ is essentially the same as the original query; the use

of ρ is just syntactic sugar. However, there are indeed several distinct ways to write a

query in relational algebra. Here is another way to write this query:

πsname(σbid=103(Reserves ⊲⊳ Sailors))

In this version we first compute the natural join of Reserves and Sailors and then apply

the selection and the projection.

This example offers a glimpse of the role played by algebra in a relational DBMS.

Queries are expressed by users in a language such as SQL. The DBMS translates an

SQL query into (an extended form of) relational algebra, and then looks for other

algebra expressions that will produce the same answers but are cheaper to evaluate. If

the user’s query is first translated into the expression

πsname(σbid=103(Reserves ⊲⊳ Sailors))

a good query optimizer will find the equivalent expression

πsname((σbid=103Reserves) ⊲⊳ Sailors)

Further, the optimizer will recognize that the second expression is likely to be less

expensive to compute because the sizes of intermediate relations are smaller, thanks

to the early use of selection.

(Q2) Find the names of sailors who have reserved a red boat.

πsname((σcolor=′red′Boats) ⊲⊳ Reserves ⊲⊳ Sailors)

Relational Algebra and Calculus 103

This query involves a series of two joins. First we choose (tuples describing) red boats.

Then we join this set with Reserves (natural join, with equality specified on the bid

column) to identify reservations of red boats. Next we join the resulting intermediate

relation with Sailors (natural join, with equality specified on the sid column) to retrieve

the names of sailors who have made reservations of red boats. Finally, we project the

sailors’ names. The answer, when evaluated on the instances B1, R2 and S3, contains

the names Dustin, Horatio, and Lubber.

An equivalent expression is:

πsname(πsid((πbidσcolor=′red′Boats) ⊲⊳ Reserves) ⊲⊳ Sailors)

The reader is invited to rewrite both of these queries by using ρ to make the interme-

diate relations explicit and to compare the schemas of the intermediate relations. The

second expression generates intermediate relations with fewer fields (and is therefore

likely to result in intermediate relation instances with fewer tuples, as well). A rela-

tional query optimizer would try to arrive at the second expression if it is given the

first.

(Q3) Find the colors of boats reserved by Lubber.

πcolor((σsname=′Lubber′Sailors) ⊲⊳ Reserves ⊲⊳ Boats)

This query is very similar to the query we used to compute sailors who reserved red

boats. On instances B1, R2, and S3, the query will return the colors gren and red.

(Q4) Find the names of sailors who have reserved at least one boat.

πsname(Sailors ⊲⊳ Reserves)

The join of Sailors and Reserves creates an intermediate relation in which tuples consist

of a Sailors tuple ‘attached to’ a Reserves tuple. A Sailors tuple appears in (some

tuple of) this intermediate relation only if at least one Reserves tuple has the same

sid value, that is, the sailor has made some reservation. The answer, when evaluated

on the instances B1, R2 and S3, contains the three tuples 〈Dustin〉, 〈Horatio〉, and

〈Lubber〉. Even though there are two sailors called Horatio who have reserved a boat,

the answer contains only one copy of the tuple 〈Horatio〉, because the answer is a

relation, i.e., a set of tuples, without any duplicates.

At this point it is worth remarking on how frequently the natural join operation is

used in our examples. This frequency is more than just a coincidence based on the

set of queries that we have chosen to discuss; the natural join is a very natural and

widely used operation. In particular, natural join is frequently used when joining two

tables on a foreign key field. In Query Q4, for example, the join equates the sid fields

of Sailors and Reserves, and the sid field of Reserves is a foreign key that refers to the

sid field of Sailors.

104 Chapter 4

(Q5) Find the names of sailors who have reserved a red or a green boat.

ρ(Tempboats, (σcolor=′red′Boats) ∪ (σcolor=′green′Boats))

πsname(Tempboats ⊲⊳ Reserves ⊲⊳ Sailors)

We identify the set of all boats that are either red or green (Tempboats, which contains

boats with the bids 102, 103, and 104 on instances B1, R2, and S3). Then we join with

Reserves to identify sids of sailors who have reserved one of these boats; this gives us

sids 22, 31, 64, and 74 over our example instances. Finally, we join (an intermediate

relation containing this set of sids) with Sailors to find the names of Sailors with these

sids. This gives us the names Dustin, Horatio, and Lubber on the instances B1, R2,

and S3. Another equivalent definition is the following:

ρ(Tempboats, (σcolor=′red′∨color=′green′Boats))

πsname(Tempboats ⊲⊳ Reserves ⊲⊳ Sailors)

Let us now consider a very similar query:

(Q6) Find the names of sailors who have reserved a red and a green boat. It is tempting

to try to do this by simply replacing ∪ by ∩ in the definition of Tempboats:

ρ(Tempboats2, (σcolor=′red′Boats) ∩ (σcolor=′green′Boats))

πsname(Tempboats2 ⊲⊳ Reserves ⊲⊳ Sailors)

However, this solution is incorrect—it instead tries to compute sailors who have re-

served a boat that is both red and green. (Since bid is a key for Boats, a boat can

be only one color; this query will always return an empty answer set.) The correct

approach is to find sailors who have reserved a red boat, then sailors who have reserved

a green boat, and then take the intersection of these two sets:

ρ(Tempred, πsid((σcolor=′red′Boats) ⊲⊳ Reserves))

ρ(Tempgreen, πsid((σcolor=′green′Boats) ⊲⊳ Reserves))

πsname((Tempred ∩ Tempgreen) ⊲⊳ Sailors)

The two temporary relations compute the sids of sailors, and their intersection identifies

sailors who have reserved both red and green boats. On instances B1, R2, and S3, the

sids of sailors who have reserved a red boat are 22, 31, and 64. The sids of sailors who

have reserved a green boat are 22, 31, and 74. Thus, sailors 22 and 31 have reserved

both a red boat and a green boat; their names are Dustin and Lubber.

This formulation of Query Q6 can easily be adapted to find sailors who have reserved

red or green boats (Query Q5); just replace ∩ by ∪:

ρ(Tempred, πsid((σcolor=′red′Boats) ⊲⊳ Reserves))

ρ(Tempgreen, πsid((σcolor=′green′Boats) ⊲⊳ Reserves))

πsname((Tempred ∪ Tempgreen) ⊲⊳ Sailors)

Relational Algebra and Calculus 105

In the above formulations of Queries Q5 and Q6, the fact that sid (the field over which

we compute union or intersection) is a key for Sailors is very important. Consider the

following attempt to answer Query Q6:

ρ(Tempred, πsname((σcolor=′red′Boats) ⊲⊳ Reserves ⊲⊳ Sailors))

ρ(Tempgreen, πsname((σcolor=′green′Boats) ⊲⊳ Reserves ⊲⊳ Sailors))

Tempred ∩ Tempgreen

This attempt is incorrect for a rather subtle reason. Two distinct sailors with the

same name, such as Horatio in our example instances, may have reserved red and

green boats, respectively. In this case, the name Horatio will (incorrectly) be included

in the answer even though no one individual called Horatio has reserved a red boat

and a green boat. The cause of this error is that sname is being used to identify sailors

(while doing the intersection) in this version of the query, but sname is not a key.

(Q7) Find the names of sailors who have reserved at least two boats.

ρ(Reservations, πsid,sname,bid(Sailors ⊲⊳ Reserves))

ρ(Reservationpairs(1 → sid1, 2 → sname1, 3 → bid1, 4 → sid2,

5 → sname2, 6 → bid2), Reservations × Reservations)

πsname1σ(sid1=sid2)∧(bid16=bid2)Reservationpairs

First we compute tuples of the form 〈sid,sname,bid〉, where sailor sid has made a

reservation for boat bid; this set of tuples is the temporary relation Reservations.

Next we find all pairs of Reservations tuples where the same sailor has made both

reservations and the boats involved are distinct. Here is the central idea: In order

to show that a sailor has reserved two boats, we must find two Reservations tuples

involving the same sailor but distinct boats. Over instances B1, R2, and S3, the

sailors with sids 22, 31, and 64 have each reserved at least two boats. Finally, we

project the names of such sailors to obtain the answer, containing the names Dustin,

Horatio, and Lubber.

Notice that we included sid in Reservations because it is the key field identifying sailors,

and we need it to check that two Reservations tuples involve the same sailor. As noted

in the previous example, we can’t use sname for this purpose.

(Q8) Find the sids of sailors with age over 20 who have not reserved a red boat.

πsid(σage>20Sailors) −

πsid((σcolor=′red′Boats) ⊲⊳ Reserves ⊲⊳ Sailors)

This query illustrates the use of the set-difference operator. Again, we use the fact

that sid is the key for Sailors. We first identify sailors aged over 20 (over instances B1,

R2, and S3, sids 22, 29, 31, 32, 58, 64, 74, 85, and 95) and then discard those who

106 Chapter 4

have reserved a red boat (sids 22, 31, and 64), to obtain the answer (sids 29, 32, 58, 74,

85, and 95). If we want to compute the names of such sailors, we must first compute

their sids (as shown above), and then join with Sailors and project the sname values.

(Q9) Find the names of sailors who have reserved all boats. The use of the word all

(or every) is a good indication that the division operation might be applicable:

ρ(Tempsids, (πsid,bidReserves)/(πbidBoats))

πsname(Tempsids ⊲⊳ Sailors)

The intermediate relation Tempsids is defined using division, and computes the set of

sids of sailors who have reserved every boat (over instances B1, R2, and S3, this is just

sid 22). Notice how we define the two relations that the division operator (/) is applied

to—the first relation has the schema (sid,bid) and the second has the schema (bid).

Division then returns all sids such that there is a tuple 〈sid,bid〉 in the first relation for

each bid in the second. Joining Tempsids with Sailors is necessary to associate names

with the selected sids; for sailor 22, the name is Dustin.

(Q10) Find the names of sailors who have reserved all boats called Interlake.

ρ(Tempsids, (πsid,bidReserves)/(πbid(σbname=′Interlake′Boats)))

πsname(Tempsids ⊲⊳ Sailors)

The only difference with respect to the previous query is that now we apply a selection

to Boats, to ensure that we compute only bids of boats named Interlake in defining the

second argument to the division operator. Over instances B1, R2, and S3, Tempsids

evaluates to sids 22 and 64, and the answer contains their names, Dustin and Horatio.

4.3 RELATIONAL CALCULUS

Relational calculus is an alternative to relational algebra. In contrast to the algebra,

which is procedural, the calculus is nonprocedural, or declarative, in that it allows

us to describe the set of answers without being explicit about how they should be

computed. Relational calculus has had a big influence on the design of commercial

query languages such as SQL and, especially, Query-by-Example (QBE).

The variant of the calculus that we present in detail is called the tuple relational

calculus (TRC). Variables in TRC take on tuples as values. In another variant, called

the domain relational calculus (DRC), the variables range over field values. TRC has

had more of an influence on SQL, while DRC has strongly influenced QBE. We discuss

DRC in Section 4.3.2.2

2The material on DRC is referred to in the chapter on QBE; with the exception of this chapter,
the material on DRC and TRC can be omitted without loss of continuity.

Relational Algebra and Calculus 107

4.3.1 Tuple Relational Calculus

A tuple variable is a variable that takes on tuples of a particular relation schema as

values. That is, every value assigned to a given tuple variable has the same number

and type of fields. A tuple relational calculus query has the form { T | p(T) }, where

T is a tuple variable and p(T) denotes a formula that describes T ; we will shortly

define formulas and queries rigorously. The result of this query is the set of all tuples

t for which the formula p(T) evaluates to true with T = t. The language for writing

formulas p(T) is thus at the heart of TRC and is essentially a simple subset of first-order

logic. As a simple example, consider the following query.

(Q11) Find all sailors with a rating above 7.

{S | S ∈ Sailors ∧ S.rating > 7}

When this query is evaluated on an instance of the Sailors relation, the tuple variable

S is instantiated successively with each tuple, and the test S.rating>7 is applied. The

answer contains those instances of S that pass this test. On instance S3 of Sailors, the

answer contains Sailors tuples with sid 31, 32, 58, 71, and 74.

Syntax of TRC Queries

We now define these concepts formally, beginning with the notion of a formula. Let

Rel be a relation name, R and S be tuple variables, a an attribute of R, and b an

attribute of S. Let op denote an operator in the set {<, >,=,≤,≥, 6=}. An atomic

formula is one of the following:

R ∈ Rel

R.a op S.b

R.a op constant, or constant op R.a

A formula is recursively defined to be one of the following, where p and q are them-

selves formulas, and p(R) denotes a formula in which the variable R appears:

any atomic formula

¬p, p ∧ q, p ∨ q, or p ⇒ q

∃R(p(R)), where R is a tuple variable

∀R(p(R)), where R is a tuple variable

In the last two clauses above, the quantifiers ∃ and ∀ are said to bind the variable

R. A variable is said to be free in a formula or subformula (a formula contained in a

108 Chapter 4

larger formula) if the (sub)formula does not contain an occurrence of a quantifier that

binds it.3

We observe that every variable in a TRC formula appears in a subformula that is

atomic, and every relation schema specifies a domain for each field; this observation

ensures that each variable in a TRC formula has a well-defined domain from which

values for the variable are drawn. That is, each variable has a well-defined type, in the

programming language sense. Informally, an atomic formula R ∈ Rel gives R the type

of tuples in Rel, and comparisons such as R.a op S.b and R.a op constant induce type

restrictions on the field R.a. If a variable R does not appear in an atomic formula of

the form R ∈ Rel (i.e., it appears only in atomic formulas that are comparisons), we

will follow the convention that the type of R is a tuple whose fields include all (and

only) fields of R that appear in the formula.

We will not define types of variables formally, but the type of a variable should be clear

in most cases, and the important point to note is that comparisons of values having

different types should always fail. (In discussions of relational calculus, the simplifying

assumption is often made that there is a single domain of constants and that this is

the domain associated with each field of each relation.)

A TRC query is defined to be expression of the form {T | p(T)}, where T is the only

free variable in the formula p.

Semantics of TRC Queries

What does a TRC query mean? More precisely, what is the set of answer tuples for a

given TRC query? The answer to a TRC query {T | p(T)}, as we noted earlier, is the

set of all tuples t for which the formula p(T) evaluates to true with variable T assigned

the tuple value t. To complete this definition, we must state which assignments of tuple

values to the free variables in a formula make the formula evaluate to true.

A query is evaluated on a given instance of the database. Let each free variable in a

formula F be bound to a tuple value. For the given assignment of tuples to variables,

with respect to the given database instance, F evaluates to (or simply ‘is’) true if one

of the following holds:

F is an atomic formula R ∈ Rel, and R is assigned a tuple in the instance of

relation Rel.

3We will make the assumption that each variable in a formula is either free or bound by exactly one
occurrence of a quantifier, to avoid worrying about details such as nested occurrences of quantifiers
that bind some, but not all, occurrences of variables.

Relational Algebra and Calculus 109

F is a comparison R.a op S.b, R.a op constant, or constant op R.a, and the tuples

assigned to R and S have field values R.a and S.b that make the comparison true.

F is of the form ¬p, and p is not true; or of the form p∧ q, and both p and q are

true; or of the form p∨ q, and one of them is true, or of the form p ⇒ q and q is

true whenever4 p is true.

F is of the form ∃R(p(R)), and there is some assignment of tuples to the free

variables in p(R), including the variable R,5 that makes the formula p(R) true.

F is of the form ∀R(p(R)), and there is some assignment of tuples to the free

variables in p(R) that makes the formula p(R) true no matter what tuple is

assigned to R.

Examples of TRC Queries

We now illustrate the calculus through several examples, using the instances B1 of

Boats, R2 of Reserves, and S3 of Sailors shown in Figures 4.15, 4.16, and 4.17. We will

use parentheses as needed to make our formulas unambiguous. Often, a formula p(R)

includes a condition R ∈ Rel, and the meaning of the phrases some tuple R and for all

tuples R is intuitive. We will use the notation ∃R ∈ Rel(p(R)) for ∃R(R ∈ Rel∧p(R)).

Similarly, we use the notation ∀R ∈ Rel(p(R)) for ∀R(R ∈ Rel ⇒ p(R)).

(Q12) Find the names and ages of sailors with a rating above 7.

{P | ∃S ∈ Sailors(S.rating > 7 ∧ P.name = S.sname ∧ P.age = S.age)}

This query illustrates a useful convention: P is considered to be a tuple variable with

exactly two fields, which are called name and age, because these are the only fields of

P that are mentioned and P does not range over any of the relations in the query;

that is, there is no subformula of the form P ∈ Relname. The result of this query is

a relation with two fields, name and age. The atomic formulas P.name = S.sname

and P.age = S.age give values to the fields of an answer tuple P . On instances B1,

R2, and S3, the answer is the set of tuples 〈Lubber, 55.5〉, 〈Andy, 25.5〉, 〈Rusty, 35.0〉,

〈Zorba, 16.0〉, and 〈Horatio, 35.0〉.

(Q13) Find the sailor name, boat id, and reservation date for each reservation.

{P | ∃R ∈ Reserves ∃S ∈ Sailors

(R.sid = S.sid ∧ P.bid = R.bid ∧ P.day = R.day ∧ P.sname = S.sname)}

For each Reserves tuple, we look for a tuple in Sailors with the same sid. Given a

pair of such tuples, we construct an answer tuple P with fields sname, bid, and day by

4Whenever should be read more precisely as ‘for all assignments of tuples to the free variables.’
5Note that some of the free variables in p(R) (e.g., the variable R itself) may be bound in F .

110 Chapter 4

copying the corresponding fields from these two tuples. This query illustrates how we

can combine values from different relations in each answer tuple. The answer to this

query on instances B1, R2, and S3 is shown in Figure 4.20.

sname bid day

Dustin 101 10/10/98

Dustin 102 10/10/98

Dustin 103 10/8/98

Dustin 104 10/7/98

Lubber 102 11/10/98

Lubber 103 11/6/98

Lubber 104 11/12/98

Horatio 101 9/5/98

Horatio 102 9/8/98

Horatio 103 9/8/98

Figure 4.20 Answer to Query Q13

(Q1) Find the names of sailors who have reserved boat 103.

{P | ∃S ∈ Sailors ∃R ∈ Reserves(R.sid = S.sid∧R.bid = 103∧P.sname = S.sname)}

This query can be read as follows: “Retrieve all sailor tuples for which there exists a

tuple in Reserves, having the same value in the sid field, and with bid = 103.” That

is, for each sailor tuple, we look for a tuple in Reserves that shows that this sailor has

reserved boat 103. The answer tuple P contains just one field, sname.

(Q2) Find the names of sailors who have reserved a red boat.

{P | ∃S ∈ Sailors ∃R ∈ Reserves(R.sid = S.sid ∧ P.sname = S.sname

∧∃B ∈ Boats(B.bid = R.bid ∧ B.color =′red′))}

This query can be read as follows: “Retrieve all sailor tuples S for which there exist

tuples R in Reserves and B in Boats such that S.sid = R.sid, R.bid = B.bid, and

B.color =′red′.” Another way to write this query, which corresponds more closely to

this reading, is as follows:

{P | ∃S ∈ Sailors ∃R ∈ Reserves ∃B ∈ Boats

(R.sid = S.sid ∧ B.bid = R.bid ∧ B.color =′red′ ∧ P.sname = S.sname)}

(Q7) Find the names of sailors who have reserved at least two boats.

{P | ∃S ∈ Sailors ∃R1 ∈ Reserves ∃R2 ∈ Reserves

(S.sid = R1.sid ∧ R1.sid = R2.sid ∧ R1.bid 6= R2.bid ∧ P.sname = S.sname)}

Relational Algebra and Calculus 111

Contrast this query with the algebra version and see how much simpler the calculus

version is. In part, this difference is due to the cumbersome renaming of fields in the

algebra version, but the calculus version really is simpler.

(Q9) Find the names of sailors who have reserved all boats.

{P | ∃S ∈ Sailors ∀B ∈ Boats

(∃R ∈ Reserves(S.sid = R.sid ∧ R.bid = B.bid ∧ P.sname = S.sname))}

This query was expressed using the division operator in relational algebra. Notice

how easily it is expressed in the calculus. The calculus query directly reflects how we

might express the query in English: “Find sailors S such that for all boats B there is

a Reserves tuple showing that sailor S has reserved boat B.”

(Q14) Find sailors who have reserved all red boats.

{S | S ∈ Sailors ∧ ∀B ∈ Boats

(B.color =′red′ ⇒ (∃R ∈ Reserves(S.sid = R.sid ∧ R.bid = B.bid)))}

This query can be read as follows: For each candidate (sailor), if a boat is red, the

sailor must have reserved it. That is, for a candidate sailor, a boat being red must

imply the sailor having reserved it. Observe that since we can return an entire sailor

tuple as the answer instead of just the sailor’s name, we have avoided introducing a

new free variable (e.g., the variable P in the previous example) to hold the answer

values. On instances B1, R2, and S3, the answer contains the Sailors tuples with sids

22 and 31.

We can write this query without using implication, by observing that an expression of

the form p ⇒ q is logically equivalent to ¬p ∨ q:

{S | S ∈ Sailors ∧ ∀B ∈ Boats

(B.color 6=′red′ ∨ (∃R ∈ Reserves(S.sid = R.sid ∧ R.bid = B.bid)))}

This query should be read as follows: “Find sailors S such that for all boats B, either

the boat is not red or a Reserves tuple shows that sailor S has reserved boat B.”

4.3.2 Domain Relational Calculus

A domain variable is a variable that ranges over the values in the domain of some

attribute (e.g., the variable can be assigned an integer if it appears in an attribute

whose domain is the set of integers). A DRC query has the form {〈x1, x2, . . . , xn〉 |

p(〈x1, x2, . . . , xn〉)}, where each xi is either a domain variable or a constant and

p(〈x1, x2, . . . , xn〉) denotes a DRC formula whose only free variables are the vari-

ables among the xi, 1 ≤ i ≤ n. The result of this query is the set of all tuples

〈x1, x2, . . . , xn〉 for which the formula evaluates to true.

112 Chapter 4

A DRC formula is defined in a manner that is very similar to the definition of a TRC

formula. The main difference is that the variables are now domain variables. Let op

denote an operator in the set {<, >,=,≤,≥, 6=} and let X and Y be domain variables.

An atomic formula in DRC is one of the following:

〈x1, x2, . . . , xn〉 ∈ Rel, where Rel is a relation with n attributes; each xi, 1 ≤ i ≤ n

is either a variable or a constant.

X op Y

X op constant, or constant op X

A formula is recursively defined to be one of the following, where p and q are them-

selves formulas, and p(X) denotes a formula in which the variable X appears:

any atomic formula

¬p, p ∧ q, p ∨ q, or p ⇒ q

∃X(p(X)), where X is a domain variable

∀X(p(X)), where X is a domain variable

The reader is invited to compare this definition with the definition of TRC formulas

and see how closely these two definitions correspond. We will not define the semantics

of DRC formulas formally; this is left as an exercise for the reader.

Examples of DRC Queries

We now illustrate DRC through several examples. The reader is invited to compare

these with the TRC versions.

(Q11) Find all sailors with a rating above 7.

{〈I, N, T, A〉 | 〈I, N, T, A〉 ∈ Sailors ∧ T > 7}

This differs from the TRC version in giving each attribute a (variable) name. The

condition 〈I, N, T, A〉 ∈ Sailors ensures that the domain variables I, N , T , and A are

restricted to be fields of the same tuple. In comparison with the TRC query, we can

say T > 7 instead of S.rating > 7, but we must specify the tuple 〈I, N, T, A〉 in the

result, rather than just S.

(Q1) Find the names of sailors who have reserved boat 103.

{〈N〉 | ∃I, T, A(〈I, N, T, A〉 ∈ Sailors

∧∃Ir, Br, D(〈Ir, Br, D〉 ∈ Reserves ∧ Ir = I ∧ Br = 103))}

Relational Algebra and Calculus 113

Notice that only the sname field is retained in the answer and that only N is a free

variable. We use the notation ∃Ir, Br, D(. . .) as a shorthand for ∃Ir(∃Br(∃D(. . .))).

Very often, all the quantified variables appear in a single relation, as in this example.

An even more compact notation in this case is ∃〈Ir, Br, D〉 ∈ Reserves. With this

notation, which we will use henceforth, the above query would be as follows:

{〈N〉 | ∃I, T, A(〈I, N, T, A〉 ∈ Sailors

∧∃〈Ir, Br, D〉 ∈ Reserves(Ir = I ∧ Br = 103))}

The comparison with the corresponding TRC formula should now be straightforward.

This query can also be written as follows; notice the repetition of variable I and the

use of the constant 103:

{〈N〉 | ∃I, T, A(〈I, N, T, A〉 ∈ Sailors

∧∃D(〈I, 103, D〉 ∈ Reserves))}

(Q2) Find the names of sailors who have reserved a red boat.

{〈N〉 | ∃I, T, A(〈I, N, T, A〉 ∈ Sailors

∧∃〈I, Br, D〉 ∈ Reserves ∧ ∃〈Br, BN,′red′〉 ∈ Boats)}

(Q7) Find the names of sailors who have reserved at least two boats.

{〈N〉 | ∃I, T, A(〈I, N, T, A〉 ∈ Sailors ∧

∃Br1, Br2, D1, D2(〈I, Br1, D1〉 ∈ Reserves ∧ 〈I, Br2, D2〉 ∈ Reserves ∧ Br1 6= Br2))

Notice how the repeated use of variable I ensures that the same sailor has reserved

both the boats in question.

(Q9) Find the names of sailors who have reserved all boats.

{〈N〉 | ∃I, T, A(〈I, N, T, A〉 ∈ Sailors ∧

∀B, BN, C(¬(〈B, BN, C〉 ∈ Boats) ∨

(∃〈Ir, Br, D〉 ∈ Reserves(I = Ir ∧ Br = B))))}

This query can be read as follows: “Find all values of N such that there is some tuple

〈I, N, T, A〉 in Sailors satisfying the following condition: for every 〈B, BN, C〉, either

this is not a tuple in Boats or there is some tuple 〈Ir, Br, D〉 in Reserves that proves

that Sailor I has reserved boat B.” The ∀ quantifier allows the domain variables B,

BN , and C to range over all values in their respective attribute domains, and the

pattern ‘¬(〈B, BN, C〉 ∈ Boats)∨’ is necessary to restrict attention to those values

that appear in tuples of Boats. This pattern is common in DRC formulas, and the

notation ∀〈B, BN, C〉 ∈ Boats can be used as a shorthand instead. This is similar to

114 Chapter 4

the notation introduced earlier for ∃. With this notation the query would be written

as follows:

{〈N〉 | ∃I, T, A(〈I, N, T, A〉 ∈ Sailors ∧ ∀〈B, BN, C〉 ∈ Boats

(∃〈Ir, Br, D〉 ∈ Reserves(I = Ir ∧ Br = B)))}

(Q14) Find sailors who have reserved all red boats.

{〈I, N, T, A〉 | 〈I, N, T, A〉 ∈ Sailors ∧ ∀〈B, BN, C〉 ∈ Boats

(C =′red′ ⇒ ∃〈Ir, Br, D〉 ∈ Reserves(I = Ir ∧ Br = B))}

Here, we find all sailors such that for every red boat there is a tuple in Reserves that

shows the sailor has reserved it.

4.4 EXPRESSIVE POWER OF ALGEBRA AND CALCULUS *

We have presented two formal query languages for the relational model. Are they

equivalent in power? Can every query that can be expressed in relational algebra also

be expressed in relational calculus? The answer is yes, it can. Can every query that

can be expressed in relational calculus also be expressed in relational algebra? Before

we answer this question, we consider a major problem with the calculus as we have

presented it.

Consider the query {S | ¬(S ∈ Sailors)}. This query is syntactically correct. However,

it asks for all tuples S such that S is not in (the given instance of) Sailors. The set of

such S tuples is obviously infinite, in the context of infinite domains such as the set of

all integers. This simple example illustrates an unsafe query. It is desirable to restrict

relational calculus to disallow unsafe queries.

We now sketch how calculus queries are restricted to be safe. Consider a set I of

relation instances, with one instance per relation that appears in the query Q. Let

Dom(Q, I) be the set of all constants that appear in these relation instances I or in

the formulation of the query Q itself. Since we only allow finite instances I, Dom(Q, I)

is also finite.

For a calculus formula Q to be considered safe, at a minimum we want to ensure that

for any given I, the set of answers for Q contains only values that are in Dom(Q, I).

While this restriction is obviously required, it is not enough. Not only do we want the

set of answers to be composed of constants in Dom(Q, I), we wish to compute the set

of answers by only examining tuples that contain constants in Dom(Q, I)! This wish

leads to a subtle point associated with the use of quantifiers ∀ and ∃: Given a TRC

formula of the form ∃R(p(R)), we want to find all values for variable R that make this

formula true by checking only tuples that contain constants in Dom(Q, I). Similarly,

Relational Algebra and Calculus 115

given a TRC formula of the form ∀R(p(R)), we want to find any values for variable

R that make this formula false by checking only tuples that contain constants in

Dom(Q, I).

We therefore define a safe TRC formula Q to be a formula such that:

1. For any given I, the set of answers for Q contains only values that are in Dom(Q, I).

2. For each subexpression of the form ∃R(p(R)) in Q, if a tuple r (assigned to variable

R) makes the formula true, then r contains only constants in Dom(Q, I).

3. For each subexpression of the form ∀R(p(R)) in Q, if a tuple r (assigned to variable

R) contains a constant that is not in Dom(Q, I), then r must make the formula

true.

Note that this definition is not constructive, that is, it does not tell us how to check if

a query is safe.

The query Q = {S | ¬(S ∈ Sailors)} is unsafe by this definition. Dom(Q,I) is the

set of all values that appear in (an instance I of) Sailors. Consider the instance S1

shown in Figure 4.1. The answer to this query obviously includes values that do not

appear in Dom(Q, S1).

Returning to the question of expressiveness, we can show that every query that can be

expressed using a safe relational calculus query can also be expressed as a relational

algebra query. The expressive power of relational algebra is often used as a metric of

how powerful a relational database query language is. If a query language can express

all the queries that we can express in relational algebra, it is said to be relationally

complete. A practical query language is expected to be relationally complete; in ad-

dition, commercial query languages typically support features that allow us to express

some queries that cannot be expressed in relational algebra.

4.5 POINTS TO REVIEW

The inputs and outputs of a query are relations. A query takes instances of each

input relation and produces an instance of the output relation. (Section 4.1)

A relational algebra query describes a procedure for computing the output rela-

tion from the input relations by applying relational algebra operators. Internally,

database systems use some variant of relational algebra to represent query evalu-

ation plans. (Section 4.2)

Two basic relational algebra operators are selection (σ), to select subsets of a

relation, and projection (π), to select output fields. (Section 4.2.1)

116 Chapter 4

Relational algebra includes standard operations on sets such as union (∪), inter-

section (∩), set-difference (−), and cross-product (×). (Section 4.2.2)

Relations and fields can be renamed in relational algebra using the renaming

operator (ρ). (Section 4.2.3)

Another relational algebra operation that arises commonly in practice is the join

(⊲⊳) —with important special cases of equijoin and natural join. (Section 4.2.4)

The division operation (/) is a convenient way to express that we only want tuples

where all possible value combinations—as described in another relation—exist.

(Section 4.2.5)

Instead of describing a query by how to compute the output relation, a relational

calculus query describes the tuples in the output relation. The language for spec-

ifying the output tuples is essentially a restricted subset of first-order predicate

logic. In tuple relational calculus, variables take on tuple values and in domain re-

lational calculus, variables take on field values, but the two versions of the calculus

are very similar. (Section 4.3)

All relational algebra queries can be expressed in relational calculus. If we restrict

ourselves to safe queries on the calculus, the converse also holds. An important cri-

terion for commercial query languages is that they should be relationally complete

in the sense that they can express all relational algebra queries. (Section 4.4)

EXERCISES

Exercise 4.1 Explain the statement that relational algebra operators can be composed. Why

is the ability to compose operators important?

Exercise 4.2 Given two relations R1 and R2, where R1 contains N1 tuples, R2 contains

N2 tuples, and N2 > N1 > 0, give the minimum and maximum possible sizes (in tuples) for

the result relation produced by each of the following relational algebra expressions. In each

case, state any assumptions about the schemas for R1 and R2 that are needed to make the

expression meaningful:

(1) R1∪R2, (2) R1∩R2, (3) R1−R2, (4) R1×R2, (5) σa=5(R1), (6) πa(R1), and

(7) R1/R2

Exercise 4.3 Consider the following schema:

Suppliers(sid: integer, sname: string, address: string)

Parts(pid: integer, pname: string, color: string)

Catalog(sid: integer, pid: integer, cost: real)

Relational Algebra and Calculus 117

The key fields are underlined, and the domain of each field is listed after the field name.

Thus sid is the key for Suppliers, pid is the key for Parts, and sid and pid together form the

key for Catalog. The Catalog relation lists the prices charged for parts by Suppliers. Write

the following queries in relational algebra, tuple relational calculus, and domain relational

calculus:

1. Find the names of suppliers who supply some red part.

2. Find the sids of suppliers who supply some red or green part.

3. Find the sids of suppliers who supply some red part or are at 221 Packer Ave.

4. Find the sids of suppliers who supply some red part and some green part.

5. Find the sids of suppliers who supply every part.

6. Find the sids of suppliers who supply every red part.

7. Find the sids of suppliers who supply every red or green part.

8. Find the sids of suppliers who supply every red part or supply every green part.

9. Find pairs of sids such that the supplier with the first sid charges more for some part

than the supplier with the second sid.

10. Find the pids of parts that are supplied by at least two different suppliers.

11. Find the pids of the most expensive parts supplied by suppliers named Yosemite Sham.

12. Find the pids of parts supplied by every supplier at less than $200. (If any supplier either

does not supply the part or charges more than $200 for it, the part is not selected.)

Exercise 4.4 Consider the Supplier-Parts-Catalog schema from the previous question. State

what the following queries compute:

1. πsname(πsid(σcolor=′red′Parts) ⊲⊳ (σcost<100Catalog) ⊲⊳ Suppliers)

2. πsname(πsid((σcolor=′red′Parts) ⊲⊳ (σcost<100Catalog) ⊲⊳ Suppliers))

3. (πsname((σcolor=′red′Parts) ⊲⊳ (σcost<100Catalog) ⊲⊳ Suppliers)) ∩

(πsname((σcolor=′green′Parts) ⊲⊳ (σcost<100Catalog) ⊲⊳ Suppliers))

4. (πsid((σcolor=′red′Parts) ⊲⊳ (σcost<100Catalog) ⊲⊳ Suppliers)) ∩

(πsid((σcolor=′green′Parts) ⊲⊳ (σcost<100Catalog) ⊲⊳ Suppliers))

5. πsname((πsid,sname((σcolor=′red′Parts) ⊲⊳ (σcost<100Catalog) ⊲⊳ Suppliers)) ∩

(πsid,sname((σcolor=′green′Parts) ⊲⊳ (σcost<100Catalog) ⊲⊳ Suppliers)))

Exercise 4.5 Consider the following relations containing airline flight information:

Flights(flno: integer, from: string, to: string,

distance: integer, departs: time, arrives: time)

Aircraft(aid: integer, aname: string, cruisingrange: integer)

Certified(eid: integer, aid: integer)

Employees(eid: integer, ename: string, salary: integer)

118 Chapter 4

Note that the Employees relation describes pilots and other kinds of employees as well; every

pilot is certified for some aircraft (otherwise, he or she would not qualify as a pilot), and only

pilots are certified to fly.

Write the following queries in relational algebra, tuple relational calculus, and domain rela-

tional calculus. Note that some of these queries may not be expressible in relational algebra

(and, therefore, also not expressible in tuple and domain relational calculus)! For such queries,

informally explain why they cannot be expressed. (See the exercises at the end of Chapter 5

for additional queries over the airline schema.)

1. Find the eids of pilots certified for some Boeing aircraft.

2. Find the names of pilots certified for some Boeing aircraft.

3. Find the aids of all aircraft that can be used on non-stop flights from Bonn to Madras.

4. Identify the flights that can be piloted by every pilot whose salary is more than $100,000.

(Hint: The pilot must be certified for at least one plane with a sufficiently large cruising

range.)

5. Find the names of pilots who can operate some plane with a range greater than 3,000

miles but are not certified on any Boeing aircraft.

6. Find the eids of employees who make the highest salary.

7. Find the eids of employees who make the second highest salary.

8. Find the eids of pilots who are certified for the largest number of aircraft.

9. Find the eids of employees who are certified for exactly three aircraft.

10. Find the total amount paid to employees as salaries.

11. Is there a sequence of flights from Madison to Timbuktu? Each flight in the sequence is

required to depart from the city that is the destination of the previous flight; the first

flight must leave Madison, the last flight must reach Timbuktu, and there is no restriction

on the number of intermediate flights. Your query must determine whether a sequence

of flights from Madison to Timbuktu exists for any input Flights relation instance.

Exercise 4.6 What is relational completeness? If a query language is relationally complete,

can you write any desired query in that language?

Exercise 4.7 What is an unsafe query? Give an example and explain why it is important

to disallow such queries.

BIBLIOGRAPHIC NOTES

Relational algebra was proposed by Codd in [156], and he showed the equivalence of relational

algebra and TRC in [158]. Earlier, Kuhns [392] considered the use of logic to pose queries.

LaCroix and Pirotte discussed DRC in [397]. Klug generalized the algebra and calculus to

include aggregate operations in [378]. Extensions of the algebra and calculus to deal with

aggregate functions are also discussed in [503]. Merrett proposed an extended relational

algebra with quantifiers such as the number of, which go beyond just universal and existential

quantification [460]. Such generalized quantifiers are discussed at length in [42].

